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Abstract

A two-phase velocity-scalar filtered mass density function (TVSFMDF) formulation developed for large eddy simulation (LES) is
applied to a temporally developing counter-current mixing layer seeded with water droplets. Closure models for both the dispersed
and carrier phases are developed and implemented that are self-consistent with the original TVSFMDF mathematical formulation devel-
oped by Carrara and DesJardin. Several simulation cases are conducted to examine the sensitivity of both evaporating and non-evap-
orating droplet dispersion on various levels of subgrid scale (SGS) modeling approximation – highlighting the importance of variations
in composition space in the phase-coupling terms.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The interaction between the carrier phase and particu-
late phase on the dispersion and evaporation/reaction of
dilute particulate–gas two-phase flows is extremely impor-
tant in many natural and technological flows. Ideally, the
best tool for simulation and analysis of a fully-coupled
gas-reactive particulate dispersed two-phase flow is direct
numerical simulation (DNS), however, the number of
degrees of freedom needed to adequately describe most sys-
tems is such that a true DNS would not be practical. As an
alternative, large eddy simulation (LES) approaches may
be pursued for which large-scale features of the flow are
simulated while small-scale features are modeled. The
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phase-averaged equations for LES of a separated two-
phase flow have been formulated by several authors (Oefe-
lein and Yang, 1996; Sirignano, 2005; Bellan, 2005) and
may be classified into two general categories. The first is
where the governing equations for each phase are spatially
filtered to obtain phase-averaged LES equations. Commut-
ing the spatial and temporal derivatives with the filtering
operation results in surface integrals that account for the
phase-coupling between each phase (Oefelein and Yang,
1996; Sirignano, 2005). In the second approach, it is
assumed that the influence of the droplet field, for example,
on the gas-phase system may be first approximated as a
point approximation resulting in so called ‘‘exact” gas-
phase conservation equations (Okong’o and Bellan,
2004). These equations are then subsequently filtered
resulting in additional SGS terms that must be modeled.
The latter approach may be also thought of as two subse-
quent applications of a filtering operation. The first filter-
ing operation uses a much smaller filter width than the
second and has a scale associated with an isolated droplet
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for which the influence of the turbulent flow field is
neglected. In this limit the second-order correlations asso-
ciated with the filtering of non-linear convection terms van-
ish (Carrara and DesJardin, 2006). A second filtering
operation is then applied using a much larger filter width
for which the influence of turbulence may be introduced.
In either approach for developing the phase-filtered LES
equations, the main challenge for closing the system of
equations is prescribing a closure model for the phase-cou-
pling terms (PCT). Recent a priori DNS studies of droplet
laden temporally developing flows have highlighted that
large PCT errors may occur if insufficient computational
parcels are used to represent the variation in the SGS com-
position, even for very low mass loadings (Miller and Bel-
lan, 2000). Similar to the problem of modeling filtered
chemical reaction source terms for a single-phase flow, it
appears then that directly closing the PCT for two-phase
flows using local filtered information will most likely result
in erroneous results.

As a promising alternative to moment based methods,
probability density function (PDF) approaches have been
successful applied for single-phase flows over the last 30
years in the context of Reynolds averaged Navier–Stokes
(RANS) formulations (Lundgren, 1967; Pope, 1985; Pope,
1976; Dopazo and O’Brien, 1976; O’Brien, 1980; Rhodes,
1975; Bilger et al., 1976; Janicka et al., 1979; Givi, 1989;
Fox, 2003) and filtered density function (FDF) approaches
in the context of LES (Colucci et al., 1998; Zhou and Pere-
ira, 2000; Jaberi et al., 1999; Givi, 2003). In PDF/FDF
approaches, subgrid scale modeling is probabilistic in nat-
ure, and the main advantage of these approaches is that
source terms in the gas phase appear in closed form.
Two-phase probability density function (PDF) methods
have also recently been formulated and successfully applied
for dispersed two-phase flows (Minier and Peirano, 2001;
Zhou and Pereira, 2000; Zhu, 1996). Hybrid LES/PDF
methods have also been used for spray simulations. In this
approach the PDF of the droplet field represents an ensem-
ble of droplets while the properties of the LES are derived
from spatial filtering principles. While it is certainly possi-
ble to conduct simulations using such a hybrid approach
(Apte et al., 2003), it is not clear that these two concepts
are compatible and the interpretation the results is not
straight forward.

Most recently, Carrara and DesJardin have extended the
FDF approach to separated two-phase flows (Carrara and
DesJardin, 2006). In this development, a transport equa-
tion for the two-phase velocity-scalar filtered mass density
function (TVSFMDF) is derived starting from the instan-
taneous governing equations for each phase. Unclosed
terms in the transport equation may be categorized in
terms of conditionally filtered quantities within a phase
and on the phase interface (Carrara and DesJardin,
2006). The closure of these terms are in general problem
specific, however, it was shown that they may be directly
related to the functional form of closures commonly used
phase-averaged averaged LES equations. In this study,
the TVSFMDF formulation is applied for an evaporating
water droplet–gas system where unclosed conditionally
averaged PCT that appear in the transport are closed in
the LES context. The resulting equations are solved using
a full particle based Monte-Carlo solution procedure for
application to a two-dimensional temporally developing
mixing layer.

The remainder of this article is organized as follows: in
Section 2 the two-phase FMDF formulation is first sum-
marized. Closure models are then presented in Section 3
for both the gas and droplet phases. Section 4 summarizes
the numerical procedure use to solve the system of stochas-
tic differential equations followed by Section 5 that present
results and discussion. Section 6 summarizes the major
findings from this study.
2. Unclosed two-phase FMDF transport equation

The TVSFMDF, F L, contains the one-point statistical
information for both phases of the flow. The TVSFMDF
may be defined in terms of the spatially filtered two-phase
fine-grain density function, n (Carrara and DesJardin,
2006):

F Lðuk;Wa;k; x; tÞ � hnðuk;Wa;k; vk; f;wa;k; c; x; tÞi

¼
X2

k¼1

Z
1

d3x0qkðx0; tÞGðx0 � xÞ/kðx0; tÞ

� nkðuk;Wa;k; vk; f;wa;k; c; x0; tÞ; ð1Þ

where the two-phase fine-grain density function for velocity
uk and field scalars, Wa;k may be defined for a separated
two-phase flow following Carrara and DesJardin (2006).
Alternatively, the two-phase fine-grain density function
may be defined to include phase interface information as
follows:

nðug; up; vg; vp;Wa;g;Wa;p;wa;g;wa;p; c; f; x; tÞ

�
X2

k¼1

/kðx; tÞ
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The advantage of including the phase interface function, c,
in the composition phase-space is that the decomposition
of the two-phase-filtered density function into marginals
for each phase is more straight forward for practical appli-
cation (Zhu et al., 2000). In Eq. (2) d denotes a Dirac delta
distribution and /kðfÞ is a phase indicator function which
is defined as 1 is phase k and 0 otherwise. The variables
Wa;k; uk and f are sampled values for the corresponding ran-
dom variables wa;k; vk and c for the composition (i.e., tem-
perature, species mass fraction, and interface location, etc.)
and velocity, respectively, at a given spatial location x and
time t. The subscripts ‘‘g” and ‘‘p” represent the property
of the gas and liquid phases, respectively. Assuming a
low Mach number approximation and simple diffusion
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with equal diffusivities then the transport equations gov-
erning the gas and liquid phase enthalpy (h) and species
mass fraction ðY bÞ may be expressed in a general form

o

ot
ðqwÞ þ r � ðqwvÞ ¼ �r � Jþ qS; ð3Þ

where wð¼ Y b; hÞ and J ¼ �Crwð¼ �qDmrY b;�l=ScrhÞ
where Sc is the Schmidt number, l is the molecular viscos-
ity and Dm is the diffusion coefficient. Following the devel-
opment of Carrara and DesJardin, a transport equation for
F L may be derived by first differentiating, n, followed by the
substitution in Eq. (3) and momentum conservation, and
finally filtering the resulting equation to yield the following
transport equation (Carrara and DesJardin, 2006; Zhu
et al., 2000):
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In Eq. (4) terms are conditionally averaged by phase
where cðfÞ is the function describing the phase interface
at spatial location x at time t (Carrara and DesJardin,
2006). The conditionally averaged quantities are defined
such that c P 0þ and c 6 0� correspond to averages within
the particle phase and within the gas phase, respectively.
Note that c ¼ 0þ and c ¼ 0� correspond to averages on
the phase interface approached from the particle and gas
phases, in that order (Carrara and DesJardin, 2006). The
terms v; q; P and f are the velocity, density, pressure and
body force terms, respectively. The tensor s

�
is the deviator-

ic part of the Cauchy stress tensor. The terms containing
Pkð¼ o/k=ot þr/k � vkÞ are interphase volumetric conver-
sion terms. These terms are small for a low particle loading
and therefore will be neglected. Discussion of when it is
and is not appropriate to disregard interphase conversion
terms may be found in Carrara and DesJardin (2006). It
should be noted that Eq. (4) is not a simple linear combina-
tion of two single-phase FMDF transport equations;
assumptions about the nature of the interaction between
the respective phases must be taken in order to cleanly
extract the marginal FMDF transport equations in each
phase.

Multiplying Eq. (4) by the phase indicator function, /j,
results in the marginal VSFMDF: F j

Lðuk;Wa;k; f; x; tÞ ¼
/jðcÞF Lðuk;Wa;k; f; x; tÞ. The last four terms on the r.h.s.
of Eq. (4) involve phase coupling due to volumetric phase
conversion and mass transfer processes (Carrara and Des-
Jardin, 2006). Assuming low particle loading, these terms
may be safely neglected resulting in the following marginal
VSFMDF for the gas-phase system:

oF g
L

ot
þ o

ox
½h/gvgjc60�iF

g
L�

¼ � o

oug

/g �
1

qg

rP g þ
1

qg

r � s
�g
þfg

 !
jc60�

* +
F g

L

" #

� o

oWa;g
/g �

1

qg

r � Ja;g þ Sa;g

 !
jc60�

* +
F g

L

" #
: ð5Þ

As can be seen in Eq. (5), transport of F g
L is generated in

configuration, velocity and scalar phase-spaces. Following
Carrara and DesJardin (2006), standard conditional
dissipation/diffusion decompositions can be applied to
the conditional averages within each phase resulting in
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for which additional terms appear involving the condi-
tional average of quantities on the phase interface (i.e.,
c ¼ 0þ and c ¼ 0�) involving the instantaneous interfacial
surface area, ekaI � r/k ¼ dðcÞrc. In Eq. (6) lg is the
gas-phase molecular viscosity, P g is the thermodynamic
pressure, q is the mass density and Ca;k is the gradient flux
transport coefficient for the transported scalar quantity wa;k

in phase k; that is, Ja;k ¼ Ca;krwa;k for the flux Ja;k. Carrara
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and DesJardin showed that terms conditionally averaged
on the phase interface may be directly related to surface
averages defined as
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where Q� is an arbitrary quantity associated with one or
the other of two separated phases and A and V are the
associated area and volume associated with that phase.
This relation is key in interpreting the conditional averages
and will be used to develop closure models in Section 3.

For the droplet phase, a similar procedure may be
employed to determine the marginal VSFMDF for the
liquid phase. For this case, conditionally filtered quantities
within the phase are neglected since the properties are
assumed to be uniform. The result is a Liouville equation
governing the time rate of change of the dispersed phase
FMDF where only conditionally surface filtered quantities
remain, except for the body force which acts everywhere,
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The first term on the r.h.s. of the equality in Eq. (8) is the flux
of wa;p in the liquid phase at the phase boundary. Physically,
this term represents heat or mass transfer from one phase to
the other when the dispersed phase temperature or species
mass fraction are contained in wa;p. The second and third
terms on the r.h.s. represent pressure and viscous drag on
the particulate due to the presence of the gas phase.

3. Closure of the FDF transport equations

The conditionally filtered quantities in Eqs. (6) and (8)
require modeling for the gas and liquid phases, respec-
tively. The following subsections discuss each of these sep-
arately including associated terms that require modeling
within the phase (i.e., c < 0� or c > 0þ) and on the phase
interface (c ¼ 0þ or c ¼ 0�).

3.1. Liquid droplet phase closures

As seen in Eq. (8), closure of phase-averaged properties
are required. For the current study, it is assumed that the
droplets may be described by a point description for which
the following set of conservation equations are applicable:
mass, energy and momentum for an individual droplet in
the absence of gravity
dmp

dt
¼ _mp ¼ �pdp
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8
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where dp is the droplet diameter, lg is the gas-phase molecu-
lar viscosity, qg is the gas-phase mass density, Cp;g and Cv;p

are the gas and droplet phase specific heats and CD is the
coefficient of drag and is approximated for a sphere as:
CD ¼ 24ð1þ Re2=3=6Þ=Rep for Rep < 1000 and CD ¼ 0:424
for Rep P 1000 where Repð¼ qgdpjvg � vpj=lgÞ is the droplet
Reynolds number. Ranz–Marshall correlations are used
to determine the Sherwood and Nusselt numbers ðShg ¼
Nug ¼ 2½1þ Re1=2

p Sc1=3
g =3� lnð1þ BMÞ=BMÞ where BMð¼ ðY s

�Y gÞ=ðY p � Y sÞÞ is the mass transfer number and a unity Le-
wis number is assumed (Ranz and Marshall, 1952). Given
the description of the droplet field from Eq. (11), the surface
conditional averages in Eq. (8) can now be closed using (7)
resulting in the following:

oF p
L

ot
þ o

ox
ðupF p

LÞ ¼
o

oT p

pdplgCp;g

mpPrgCv;p
ðeT g � T pÞNugF p

L

� �
� o

oT p

LvapplgBMdpShg

mpCv;pScg

F p
L

� �
� o

omp

dpplgBM

Scg

ShgF p
L

� �
� o

oup

pqgCDd2
p

8mp

j~vg � upjð~vg � upÞF p
L�

" #
;

ð12Þ

where ~f k � h/kfki=h/kqki ¼ h/kfki=ðhkqkÞ, consistent with
Carrara and DesJardin (2006). As a first step, the gas-phase
information in Eq. (12) is expressed in terms of the local fil-
tered properties. More advanced closures could also be
constructed using local gas-phase Monte-Carlo particle
information using a direct exchange model (Fox, 2003).

3.2. Gas-phase closures

The terms associated with c < 0� are conditional aver-
ages within the gas phase where as a first step it is assumed
that closure models for single-phase FDF formulations
may be used (Sheikhi et al., 2003; Gicquel et al., 2002; Col-
ucci et al., 1998) under the conditions of low droplet mass
loading. With this assumption the generalized Langevin
model (GLM) and linear mean square estimation (LMSE)
models are employed
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and



Fig. 1. Orientation of interface unit normal vector.
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where G
�
¼ �xð1=2þ 2Co=3Þ I

�
;x ¼ �=k is the turbulent

mixing frequency, and Xm ¼ C/x. The turbulent dissipa-
tion and turbulent kinetic energy are given by � ¼
C�k

3=2=Df and k ¼ 1=2ð gvg � vg � ~vg � ~vgÞ, respectively. The
dynamic and kinematic viscosities in the gas phase are gi-
ven by mg and lg. The parameters Co;C� and C/ are
modeling constants that must be specified and Df is the
LES filter width (Sheikhi et al., 2003). For the
simulations conducted here, values suggested in the liter-
ature, Co ¼ 2:1; C� ¼ 1 and C/ ¼ 1 are adopted (Pope,
1994).

The remaining last three unclosed terms on the r.h.s
of Eq. (6) are surface filtered terms conditioned upon
c ¼ 0�. The first term conditioned on the interface
involves the gradient of the gas-phase conserved quan-
tity wa;g representing the fields: wa;g ¼ fT g; Y b;gg for

a ¼ fT ; bg with JT ;g ¼ �jgrT g and Jb;g ¼ �qgDmrY b;g

where jg is the gas-phase thermal conductivity and Dm

is the gas-phase diffusivity. For the problem considered
here: water and air, b ¼ fAir;H2Og represents the rela-
tive mass fractions of the species of air and water.
These terms are closed in terms of droplet properties
using interface matching conditions. In what follows,
the interface normal is determined from the interface
function, cðx; tÞ, and is taken to be positive oriented
outward from the droplets phase with eI

n;g ¼ �eI
n;p, as

shown in Fig. 1.
The interface matching condition for energy, neglect-

ing radiation and chemical reactions at the surface, can
be written as (Kataoka, 1986; Carrara and DesJardin,
2006)X2
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Disregarding surface tension and substituting in for the
mass flux in terms of the quasi-steady droplet model then
the heat flux on the gas side of the interface may be explic-
itly determined
�
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where _m00p ¼ _m00g and Lvap ¼ hg � hp and a unity Lewis
number is assumed. Substituting Eq. (16) into Eq. (6)
and using Eq. (7) then results in the following closure for
the enthalpy term:
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The phase-coupling term involving the species mass fraction
for the gas-phase are determined by considering species con-
servation across the interface for Y b;g with b ¼ fAir;H2Og
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Substituting Eq. (18b) into Eq. (17) yields
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wherein the filtered density is given as qg ¼ P o=ðReT gÞ with

R ¼ Ru=
P

i
eY i=MW i

� ��1

where Ru is the universal gas con-

stant and MW i is the molecular weight for species i.
The last term in the gas-phase TVSFMDF is associated

with traction forces on the phase interface. The momentum
jump condition across the interface, neglecting surface ten-
sion effects can be written as (Kataoka, 1986; Carrara and
DesJardin, 2006)

r
�g
�eI

n;g ¼ � r
�p
�eI

n;p � _m00gvg: ð20Þ

The inner product of the Cauchy stress tensor in the drop-
let phase with the surface normal is the traction on the
droplet surface, t ¼ r

�p
�eI

n;p. In this context, the surface trac-
tion simply represents the drag on the droplet surface by
virtue of the gas-phase flow. Employing the particle drag
model from Eqs. (11), (20) becomes,

o

oug

½hr
�g
�eI

n;gaI jc¼0�iF
g
L�

¼ � o

oug

Ag

V g

1

2
~ApqgCDjug � hvpijðug � ~vpÞF g

L

� �
� o

oug

Ag

V g

4pjg~r

Cp;g
~Ap

lnð1þ BMÞ~vpF g
L

" #
¼ o

oug

½SU F g
L�:

ð21Þ

In Eqs. (17), (19) and (21) the ratio of the surface area to
volume, Ag=V g, appears as a pre-multiplication factor.
Using the definition of the volume fraction, this term
may be expressed in terms of the local particle loading that
is determined from the particle Monte-Carlo field

Ag

V g

¼ Ag

V T

1

hg

¼ 4per2N p

hgD
3
f

: ð22Þ

where D3
f is the LES filter volume.

Substituting Eqs. (17), (19), (21) and (22) into Eq. (6)
results in the final form of the modeled gas-phase marginal
VSFMDF transport equation

oF g
L

ot
þ o

ox
ðugF g

LÞ ¼
o

ox
mg

oF g
L

ox

� �
þ o

oug

1

qg

oP g

ox
F g

L

� �
þ 1

2
Co�

o2F g
L

oug � oug

þ mg

o~vg

ox
� o~vg

ox

� �
o2F g

L

oug � oug

þ 2mg

o~vg

ox
� o2F g

L

ox � oug

� o

oug

½Xmðug � ~vgÞF g
L�

þ o

oT g

½XmðT g � eT gÞF g
L�

þ o

oY air;g

½XmðY air;g � eY air;gÞF g
L�

þ o

oT g

½ST F g
L� þ

o

oY air;g

½SY ;airF
g
L�

þ o

oY H2O;g

½SY ;H2OF g
L� þ

o

oug

½SU F g
L�: ð23Þ
4. Statistically equivalent stochastic differential equations

Eqs. (12) and (23) comprise a system of two Fokker–
Planck equations (FPE) for the two-phase flow. The
approach used to solve these equations employs the so
called ‘‘principle of equivalent systems” (Pope, 1985) which
allows for the determination of a system of statistically
equivalent stochastic differential equations (SDE) that are
solved in lieu of the original FPE.
4.1. Droplet phase ODEs

Using the principle of equivalent systems, the system of
differential equations corresponding to Eq. (12) is

dXþp ¼ Uþp dt; ð24aÞ

dUþp ¼
pqgCDd2

p

8Mþ
p

j~vg �Uþp jð~vg �Uþp Þdt; ð24bÞ

dTþp ¼
pdplgCp;g

Mþ
p PrgCv;p

ðeT g � Tþp ÞNug dt �
LvapplgBMdpShg

Mþ
p Cv;pScg

dt;

ð24cÞ

dMþ
p ¼ �

dpplgBM

Scg

Shg dt; ð24dÞ

where the superscript ‘‘+” is used to denote the notional
Monte-Carlo particle for the corresponding physical var-
iable and accounts for compositional changes in droplet
location, velocity, temperature and mass. These equa-
tions are directly coupled to the gas-phase through their
dependence on the temperature and velocity in Eqs.
(24b) and (24c), respectively, and indirectly through
Re; Sh;Nu, and CD. It is of importance to note that be-
cause the velocity is included in the phase-space in the
VSFDF formulation, the convection is in closed form
and therefore the filtered velocity fluctuation does not
appear in the above equations. Consequently, only the
phase-averaged gas-phase velocity, ~vg and the instanta-
neous droplet phase Monte-Carlo velocity, Uþp are
included.
4.2. Gas-phase SDEs

The equivalent stochastic differential equations (SDEs)
for the gas-phase system are in general non-unique, how-
ever, guidance on the construction of the SDEs may be
found in Sheikhi et al. (2003) resulting in the following:

dXþg ¼ Uþg dt þ
ffiffiffiffiffiffiffi
2mg

p
dWX ; ð25aÞ

dUþg ¼ ½rP g þ 2mgr2~vg þG
�
�ðUþg � ~vgÞ�dt

þ
ffiffiffiffiffiffiffi
2mg

p
r	 ~vg � dWX þ

ffiffiffiffiffiffiffiffi
Co�

p
dWU þ SU dt; ð25bÞ

dTþg ¼ �C/XmðTþg � eT gÞdt þ ST dt; ð25cÞ
dY þair;g ¼ �C/XmðY þair;g � eY air;gÞdt þ SY ;air dt; ð25dÞ
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where WX and WU denote statistically independent Wie-
ner–Lèvy stochastic processes (Gardiner, 1982). The effects
of the liquid phase appears in these equations through the
source terms, SU ; ST and SY ;air and the volume fraction.

Eqs. (24b)–(24d) and (25b)–(25d) comprise a system of
non-linear ODEs and SDEs which are solved simulta-
neously using Monte-Carlo methods. The details of the
numerical procedure to solve these equations are discussed
next.
5. Numerical solution procedure

The marginal TVSMFDF for each phase is represented
as an ensemble of Np statistically identical Monte-Carlo
(MC) particles. Each particle is transported in physical
and composition space according to their respective
SDE/ODEs. The general solution approach is based on
the use of a stand-alone full particle based implementation
for both phases of the flow. The method is a combination
of a ‘‘grid free” Lagrangian approach for the notional par-
ticle time evolution with a computational grid for estimat-
ing mean fields and solving a corrected pressure Poisson
equation to drive the flow. A fractional step methodology
is implemented when integrating the SDEs ensuring that
the solenoidal character of the field in the incompressible
(low Mach number) formulation is enforced based on the
approach of Minier and Pozorski (1999) and Minier and
Peirano (2001). A flow diagram of the overall algorithm
is summarized in Fig. 2.
5.1. Numerical solution procedure: gas-phase SDEs

Some care must be taken when integrating the system of
stochastic differential equations in the gas phase. General
predictor–corrector algorithms cannot be implemented
Fig. 2. Flow diagram of particle algorithm.
for temporal integration of the SDEs without violating
Itô calculus: the ‘‘predictor” step extrapolates an interme-
diate value of the integrated quantity at a future time,
t þ Dt. When integrating the SDE’s, the Markovian charac-
ter of the diffusion process must be preserved, and because
the future probabilities associated with the Markov pro-
cesses are determined from its most recent values, this
extrapolation is not acceptable (Gardiner, 1982). There-
fore, a modified Euler–Maruyamma approximation is
implemented for temporal integration that preserves the
Itô–Gikhman nature of the SDEs (Cao and Pope, 2003;
Gardiner, 1982). Given the Itô SDE:

dXþðnÞ ¼ AðnÞðXþðnÞ½t�; tÞdt þ BðnÞ
�
ðXþðnÞ½t�; tÞ � dWnðtÞ; ð26Þ
the finite difference approximation is given by

XþðnÞ1=2 � XþðnÞðtÞ þ Dt
2

AðnÞðXþðnÞ½t�; tÞ; ð27Þ

XþðnÞ1=2ðt þ DtÞ ¼ XþðnÞðtÞ þ DtAðnÞðXþðnÞ1=2; t þ DtÞ
þ BðnÞðXþðnÞ; t þ DtÞ

ffiffiffiffiffi
Dt
p

fðnÞðtÞ; ð28Þ
where fðnÞðtÞ is a Gaussian distributed random variable.
The above scheme exhibits strong convergence of order
1/2 and weak convergence of order 1 (Xu and Pope,
1999). The intermediate step Xþ1=2 is a second-order accu-
rate midpoint scheme, and when the diffusion step is added,
the entire scheme is weak first-order accurate (Cao and
Pope, 2003). The drift and diffusion coefficients, A and B

�
specified by Eqs. (25b)–(25d), require mean-field informa-
tion from the gas phase and mean-field information from
the droplet phase in the phase-coupling terms. Mean fields
are obtained from the particle properties in both phases via

a non-parametric kernel estimation method based on linear
spline basis functions that is analogous to a ‘‘cloud-in-cell”
procedure (Dreeben and Pope, 1992). The general solution
approach is based on the use of a stand-alone full particle
based implementation for both phases of the flow. As
noted, a fractional step methodology is implemented when
integrating the SDEs ensuring that the solenoidal character
of the field in the incompressible (low Mach number) for-
mulation is enforced and consequently a corrected pressure
gradient is obtained. The implementation is similar to the
full particle approaches of Anand et al. (1997), Delarue
and Pope (1998) and Minier and Pozorski (1995, 1999).
The interested reader is directed to the excellent article by
Minier and Pozorski (1999) wherein a detailed schematic
of a pressure-correction fractional step method, developed
by Minier and Pozorski, is implemented with great success
for the simulation of turbulent channel flow. The computa-
tional time step is calculated dynamically so that the inte-
gration time step for a given MC particle in both phases
(although this is only the ‘‘overall” step in the droplet
phase, where sub-cycling is used) is limited to the smallest
value: minfdtg; dtpg, where



Fig. 3. Sketch of the base gas flow. Note: the mean velocity profile
curvature is exaggerated.
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dtg ¼
1

10

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

g;max þ V 2
g;max

q ; ð29Þ

dtp ¼
1

10

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U 2

p;max þ V 2
p;max

q : ð30Þ

With jUþk;maxj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Uþk;max � e1

� �2

þ Uþk;max � e2

� �2

 �s

where

Uþk;max � Uþk;maxe1 þ V þk;maxe2 is the maximum velocity for

any given MC particle in each phase at time t with
k ¼ fp; gg and the subscripts 1 and 2 denoting the directions
x and y, respectively. In this implementation the uniform
computational mesh spacing is given by dx. The time step
is chosen in this way so that it take any given MC particle
at least 10 iterations to entirely cross a computational cell.

Information is interpolated to the particle field from the
mean field, and vice versa, using a weighted bilinear CIC
interpolation routine. Other higher-order interpolation
schemes have been attempted with varying degrees of suc-
cess in single-phase FDF simulations (Colucci et al., 1998)
and CIC approach is pursued here because in the two-
phase simulation, a relatively accurate and computation-
ally efficient interpolation method is necessary. This is par-
ticularly true here as where a large number of MC particles
are needed to minimize statistical error in the gas phase
using the full ‘‘stand-alone” solution approach. In hybrid
LES velocity-scalar FDF methods for single-phase flow,
it is found that approximately 40 particles per cell is accept-
able for some flows (Sheikhi et al., 2003), herein more than
25 times this amount are used to reduce the statistical noise
to sufficiently low levels.

5.2. Numerical solution procedure: droplet phase ODEs

In the solution procedure, the droplet phase equations
are integrated in-step with the SDE’s in the gas phase.
The droplet phase equations comprise a set of coupled
non-linear ordinary differential equations that require
numerical integration techniques suitable for a numerically
stiff system of ODE’s. The droplet equations are integrated
in a fractional step methodology using the LSODE (Law-
rence Livermore Solver for Ordinary Differential Equa-
tions) library (Radhakrishnan and Hindmarsh, 1993).
First the gas-phase equations are advanced one time step
at which time mean-field information needed in the droplet
phase DE’s is obtained from the gas-phase particle field.
The droplet equations are subsequently integrated with a
local time step, calculated from the gas-phase advance-
ment, with transient sub-cycling until convergence criterion
is met.

6. Problem setup

The flow geometry of interest is that of a temporally
developing counter-current mixing layer, shown schemati-
cally in Fig. 3. The temporally developing mixing layer
consists of two parallel streams traveling in opposite direc-
tions with the same speed, U1, so that the velocity differ-
ence across the layer is DU ¼ 2U1. In the temporally
developing mixing layer reference frame, the computa-
tional domain translates with the mean convective velocity
of the primary stream-wise vortices that grow in time. The
stream-wise ðxÞ and cross-stream ðyÞ domain lengths are
equal with lengths xmax and ymax, respectively. Periodic
boundary conditions are employed at the stream-wise
boundaries ðx ¼ 0; x ¼ xmaxÞ and a free-slip boundary con-
dition is applied at the cross-stream boundaries ðy ¼ 0;
y ¼ ymaxÞ.

For the periodic boundary condition, any Monte-Carlo
particle leaving the domain at x ¼ xmax is mapped via a
periodic cell to the opposing boundary, and vice versa.
For the free-slip boundary condition, any Monte-Carlo
particles passing through the boundaries y ¼ 0 and y ¼
ymax are reflected across the boundary with V þp ¼ �V þp ,
where stream-wise velocity component, Uþp , and all scalar
values are left unchanged. Both the filtered stream-wise
velocity and scalar fields are initialized via a hyperbolic tan-
gent profile with ~ug ¼ U1; eT g ¼ T hot in the top stream and
~ug ¼ �U1; eT g ¼ T cold in the bottom stream. The species
mass fractions are eY air;g ¼ 1; eY H2O;g ¼ 0 everywhere for
the water droplet laden two-phase flow simulations. The
domain length, xmax is related to the instability length scale
L through the initial vorticity thickness, dX;oð¼ DU= j
oU g;o=oyjmaxÞ, with U g;o the time averaged stream-wise

velocity, via: L ¼ xmax=dX;o ¼ 2Npair 2p
auns

� �
where the most

unstable mode, auns ¼ 0:4446, is obtained from a linear
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stability analysis of the hyperbolic tangent profile
(Michalke, 1964). The formation of large-scale roller
structures is facilitated by introducing small harmonic,
phase-shifted disturbances containing sub-harmonics of
the most unstable mode, determined from a linear stability
analysis into the cross-stream and stream-wise initial veloc-
ity profiles (Drazin and Reid, 1981; Jackson and Grosch,
1989). One vortical structure is obtained by specifying the
number of vortex pairs, Npair ¼ 1 in the definition of the
instability length scale, L.

For gas phase analysis, physical parameters in the gas
phase are given as xmax ¼ 0:1 m;T hot ¼ 360 K;T cold ¼ 300
K, with air being the working fluid with ReX ¼ 2DUdX;o=
mair ¼ 25 where dX;o ¼ 0:002095 m and tmax ¼ 6 s. Simula-
tions are conducted on equally spaced grid points with
dx ¼ dy. All FMDF simulations are conducted on a
51� 51 computational grid. The gas-phase Monte-Carlo
particles are initially uniformly distributed over the compu-
tational domain with 1464 particles per cell. The large
number of Monte-Carlo particles is necessary to reduce
noise in the full particle based computational method.
The computational time is increased with the large number
of MC particles, but not restrictively so; simulation times
varied from 20 to 30 h depending on the interpolation
scheme used. Simulations with far less particles,

 100–200 per cell dramatically decrease the computa-
tional cost (3–4 h) but the results were extremely noisy,
and not included here.

7. Gas-phase analysis

Before the two-phase simulation is conducted it is impor-
tant to ensure that the VSFMDF simulation predicts reason-
able gas-phase physics. This is accomplished by comparison
of the FMDF results for (1) transient evolution of the
momentum thickness, vorticity thickness and total kinetic
energy of the gas-phase flow with traditional DNS and
LES simulations under the same flow configurations, and
(2) SGS momentum information with traditional LES and
a hybrid LES-FDF from Drozda (2002) and Sheikhi et al.
(2003). The DNS solver used is based on a finite volume for-
mulation with AUSM+ flux vector splitting and standard 4-
stage Runge–Kutta time integration. Ninth-order upwind
biased stencils are used to construct the convective fluxes
at the control volume surfaces. The same descritization is
employed for LES which incorporates a dynamic Smagorin-
sky model for SGS closure. Further details on the DNS/LES
code may be found in DesJardin et al. (2004).

An overall measure of the evolution of the gross dynam-
ics of the gas-phase flow may be obtained from the time
evolution of the total flow kinetic energy, momentum,
and vorticity thicknesses. The total kinetic energy of the
flow is calculated directly from the particle field in the
FMDF simulation using

ktotðtÞ ¼
1

2

XNp

n¼1

½ðUþg ðnÞÞ
2 þ ðV þg ðnÞÞ

2�: ð31Þ
In the DNS and LES simulations, the total kinetic energy is
given by

ktotðtÞ ¼
1

2

XNx

i¼1

XNy

j¼1

½ðui;jÞ2 þ ðvi;jÞ2�; ð32Þ

where Nx and Ny are the number of computational nodes in
the x and y directions and u and v are the components of
the resolved and filtered gas-phase velocity for the DNS
and LES, respectively.

DNS simulations are conducted on grids of resolution
50� 50; 100� 100; 200� 200; 300� 300 and 500� 500
for total kinetic energy, momentum thickness ðdmÞ and vor-
ticity thickness ðdxÞ as functions of time.

Fig. 4 shows the transient evolution of the normalized
flow field kinetic energy, momentum and vorticity thick-
ness. The total kinetic energy decreases as a function of
time because of viscous dissipation, as expected. The
DNS is grid independent at grid resolutions of 300� 300
and above.

Fig. 5 shows that the transient evolution of the total
flow kinetic energy is over-predicted by the LES-DSMAG
by almost a constant value of approximately 1%. The
VSFMDF simulation also over predicts the value of the
kinetic energy, but the amount of over prediction is not
constant with time. Predicted values of the total kinetic
energy from the VSFMDF simulation fall between that
predicted by the DNS and LES-DSMAG simulations,
never varying more than about 1% from the DNS. Fig. 6
shows the temporal evolution of the normalized momen-
tum thickness for the DNS, LES-DSMAG and VSFMDF
simulations. The LES-DSMAG slightly over predicts the
transient growth rate of the momentum thickness, but flow
field dynamics are accurately captured. The VSFMDF sim-
ulation initially matches both the DNS and LES-DSMAG
results well, but under predicts the temporal evolution of
the momentum thickness at later times. The largest value
of the under prediction is on the order of 8.5% of the max-
imum. Aside from the under prediction the field dynamics
are still captured as evidenced by the overall curvature
trend of the momentum thickness curve when compared
to the DNS.

The temporal evolution of the normalized vorticity
thickness for DNS, LES-DSMAG and VSFMDF simula-
tions is shown in Fig. 7. The vorticity thickness is a differ-
entiated quantity, as opposed to an integrated quantity like
the momentum thickness, and an exact match with LES-
DSMAG and VSFMDF to the DNS result is difficult. In
Fig. 7, the LES-DSMAG simulation initially under pre-
dicts the vorticity thickness growth rate and slightly over
predicts at later times. The inherently noisy character of
the full particle Monte-Carlo method is evident in the cal-
culation of the vorticity thickness. The short time evolution
of the vorticity thickness is quite close the DNS, but some
variation is observed later in the simulation. The maximum
over prediction of the vorticity thickness is approximately
12% from the DNS value, however, the maximum value



Fig. 4. Temporal evolution of (a) total flow field kinetic energy normal-
ized by its initial value, (b) momentum thickness normalized by its initial
value and (c) vorticity thickness normalized by its initial value, all
calculated with DNS.

Fig. 5. Temporal evolution of the total flow field kinetic energy
normalized by its initial value calculated with DNS, LES-DSMAG and
VSFMDF.

Fig. 6. Temporal evolution of the momentum thickness normalized by its
initial value calculated with DNS, LES-DSMAG and VSFMDF.
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of the vorticity thickness from the VSFMDF simulation
under predicts the DNS value by only about 4%.
Fig. 8 shows the statistical variability in the second-
order SGS moments where Reynolds averaged values of
the correlations, huui; huvi and hvvi, with sða; bÞ �
habi � haihbi (not too be confused with the LES condi-
tional averages), from the VSFMDF simulation are com-
pared to LES-SMAG and LES-FDF simulations of
Sheikhi et al. (2003) and Drozda (2002). The SGS correla-
tions are closed via a non-dynamic Smagorinsky model
(Smagorinsky, 1963; Rogallo and Moin, 1984) where the
accuracy and relative advantages and disadvantaged of
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Fig. 8. Cross-stream variation of Reynolds averaged SGS moments
calculated with LES-SMAG and LES-FDF of Sheikhi et al. (2003) and
Drozda (2002) and VSFMDF from this study.

Fig. 7. Temporal evolution of the vorticity thickness normalized by its
initial value calculated with DNS, LES-DSMAG and VSFMDF.
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the SGS model are well-established. In the LES-FDF
results, a hybrid method where mean-field information is
obtained from a ‘‘traditional” LES-SMAG while SGS
information is modeled according the velocity-scalar
FDF approach was used (Sheikhi et al., 2003). It can be
seen that the LES-FDF method slightly over predicts the
SGS correlations as compared to the traditional LES-
SMAG simulations and the VSFMDF method in turn
slightly over predicts the LES-FDF results. For the
huui; huvi and hvvi correlations, the VSFMDF over predicts
the values predicted by the LES-SMAG simulations by
approximately 13%, 20% and 15%, respectively. This is in
part an artifact of the LMSE closure (Gicquel et al.,
2002).
8. Droplet laden flow

For the water droplet laden two-phase flow simulations,
the gas-phase velocity is U1 ¼ 1:0 m=s with DU ¼ 2 m=s
and ReX ¼ 2DUdX;o=mair ¼ 188. The characteristic time
scale for droplet/gas simulations, tdrops

c , is scaled by the
momentum response time sMð¼ ½qpd2

p�=½18lg� ¼ StLref=u1Þ
so that tdrops

c ¼ t=sM with tdrops
c;max � tmax ¼ 20. This scaling is

chosen so that the droplet relaxation time scale is compara-
ble to the evaporation time scale. Other simulation param-
eters related to domain length and grid size are identical to
the single-phase gas flow: xmax ¼ 0:1 m, grid point in
dx ¼ dy are equally spaced with a 51� 51 computational
grid. The gas-phase Monte-Carlo particles are initially uni-
formly distributed over the computational domain with
1464 particles per cell. There are 2928 droplet phase
Monte-Carlo particles uniformly distributed in the lower
portion of the flow domain initially at rest and in thermo-
dynamic equilibrium with the gas that is at 300 K and
1 atm. Because the droplets are initially at rest, any move-
ment comes directly from the gas-phase momentum cou-
pling. As the gas flow evolves in time, droplets are swept
into the gas-phase roller structure.

Fig. 9 shows representative results for the transient evo-
lution of the droplet phase temperature and number den-
sity at times of (a) 0.125 s, (b) 0.25 s, (c) 0.375 s, (d) 0.5 s,
(e) 0.625 s and (f) 0.75 s. For this case a 815 lm diameter
droplet with an initial Stokes number, Stð¼ qpd2

pu1=
18mgxmaxÞ of 2 is two-way coupled to the gas-phase flow.
As the droplets are entrained into the gas phase they are
heated via and evaporate. The droplets are depleted from
the core area of the large-scale roller structure and accumu-
late in regions of high strain and low vorticity, as is evident
by high values of number density in these regions. This
observation is consistent with Wen’s ‘‘stretching” hypothe-
sis (Wen et al., 1992) and DNS simulations of particle
laden mixing layers (Wei Ling et al., 1998; Miller and Bel-
lan, 1999; Chein and Chung, 1988) and consistent with the
findings of Squires and Eaton (1990) for the dispersion of
particles in homogeneous turbulence.

Fig. 10 shows the dispersion, DðtÞ, vs. time for one-way
coupled non-evaporating 100 lm;600 lm, and 3800 lm
diameter droplets corresponding to St of 0.01, 1 and 50,
respectively. The dispersion is defined as

DðtÞ ¼
XNp

n¼1

½ðX nþ
p ðtþDtÞ�X nþ

p ðtÞÞ
2þðY nþ

p ðtþDtÞ� Y nþ
p ðtÞÞ

2�=Np;

ð33Þ

which provides a measure of the inertial effects on the dis-
persion for droplets of different mass as a function of time.
Droplets with unity Stokes number disperse at a greater rate
than either smaller or larger droplets. Similar observations



Fig. 9. Droplet temperature contour with droplet number density isolines at (a) t = 0.125 s, (b) t = 0.25 s, (c) t = 0.375 s, (d) t = 0.5 s, (e) t = 0.625 s,
(f) t = 0.75 s.
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have been noted experimentally where it has been found
that turbulent transport of particles can increase as particle
size increases in several turbulent flow configurations
(Goldschmidt and Eskinazi, 1966; Goldschmidt et al.,
1972; Lilly, 1973; Memmot and Smoot, 1978; Yuu et al.,
1978). This result has also been noted in DNS simulations
of particle laden turbulent flows (Chein and Chung, 1988;
Wei Ling et al., 1998; Chein and Chung, 1987; Chung and
Troutt, 1988). For small Stokes number droplets, momen-

tum response times are short: sM ¼
qpd2

p

18lg

 0:03 s, and dis-

persion for these droplets is essentially that of fluid
particles. At the other extreme for St ¼ 50, the momentum
response time much longer ðsM 
 5 sÞ and these droplets
follow basically a ballistic trajectory.



Fig. 10. DðtÞ vs. time for one-way coupled non-evaporating droplets with
St ¼ 0:01; 1 and 50.
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In addition to the bulk motion, the effects of high fre-
quency gas-phase turbulent fluctuations are also evident
in Fig. 10. During the early response time, the effects of
SGS turbulence is negligible compared to the mean drag
on the droplets due to the bulk motion of the flow. The
fluctuations then grow as the shear layer develops with a
modeled SGS eddy time scale of sSGS 
 X�1

m ¼
½C/C�k

1=2=Df ��1 
 2:5� 10�2 s�1. Subgrid scale Stokes
numbers based on this time scale are: StSGS ¼
sp=sSGS ¼ C/C�k1=2

Df
qpd2

p18lg and equal 1.25, 30 and 125 for
the 100 lm;600 lm, and 3800 lm diameter droplets,
respectively. These values are consistent with the observed
trends in Fig. 10 with larger fluctuating values for the
St ¼ 0:01 and St ¼ 1 droplets and small fluctuating values
for the larger St ¼ 50 droplets.
Fig. 11. Normalized spatially averaged stream-wise drag coupling term vs.
time calculated from the Monte-Carlo particle field (a) and localized error
in the averaged stream-wise drag coupling term vs. time calculated from
the particle and mean fields (b).
9. Phase-coupling source terms

The phase coupling in a two-phase flow formulation is
manifest mathematically through phase-coupling source
terms. In more traditional mean-field formulations, (i.e.

continuum mixture theory, phase-averaged LES, . . .etc.)
the only information available to evaluate source terms is
that which is averaged over the computational cell for both
phases; that is, information ‘‘on the grid” (Pope, 2000;
Drew and Passman, 1998; Fox, 2003). The result is that
source terms are approximated; i.e. hSimean ¼ f ðhT pi;
hMpi; hU piÞ for a given source term, S, that is a function,
for example, of particle temperature, mass and velocity.
An advantage of the two-phase FDF approach is that par-
ticle field information can be used to construct source terms
using SGS information taken directly from the Monte-Car-
lo particles; i.e. hSiMC ¼ hf ðTþp ;Mþ

p ;U
þ
p Þi. The difference

between hSimean and hSiMC, which defines hSiSGS, is due to
the effects from SGS turbulence plus statistical errors asso-
ciated with using a finite size ensemble of Monte-Carlo par-
ticles. This statistical error scales as

ffiffiffiffiffiffi
Np

p� ��1
and is small

relative to SSGS because of the large number of Monte-Carlo
particle used (
 3:8 million) resulting in statistical errors of
approximately 1� 10�4.

Fig. 11a shows the time evolution of the normalized
stream-wise component of the droplet drag source term,
hF DuiMC=hF Duðt ¼ 0ÞiMC, calculated using all of the Monte-
Carlo particles in the field. The droplet drag decreases in
time because the slip velocities that are initially large
decrease as the droplets accelerate. Droplets with larger
Stokes number experience larger drag overall because of
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their slow response to the flow momentum. The smallest
droplets with St ¼ 0:01 quickly reach dynamic equilibrium
with the gas at which time their stream-wise component
of drag equilibrates to a constant value near zero.
Fig. 11a also shows that the larger droplets exhibit larger
variations in hF DuiMC compared to the smaller droplets
because they cannot adjust as fast to the SGS turbulence
fluctuations.

Fig. 11b shows the time evolution of F Du;SGSð¼
ðhF Duimean � hF DuiMC=ðhF Duðt ¼ 0ÞiMCÞÞÞ which is the con-
tribution of the SGS drag source term normalized by the
drag at t ¼ 0. For the St > 0:01 droplets, the contribution
of the SGS drag source is between 0.5% and 2% early in
Fig. 12. Normalized spatially averaged stream-wise drag coupling term vs.
time calculated from the mean field (a) and compounded error in the
averaged stream-wise drag coupling term vs. time calculated from the
particle and mean fields (b).
the simulation and increases rapidly after t ¼ 0:75 tmax.
This time corresponds roughly to the eddy turn-over time
where the droplets are re-entrained into the high speed
laden stream where the SGS turbulent kinetic energy is
large.

Fig. 12a shows the time evolution of hF Duimean=hF Du

ðt ¼ 0Þimean. For this case, the droplet equations are
updated using the mean-field values therefore representing
a traditional mean-field two-phase flow simulation, viz.

phase-averaged LES. Comparing Figs. 11a and 12a reveals
differences, and these differences are summarized in
Fig. 12b representing the compounded error,

P
F Du;SGS,

that would be introduced if the effects of SGS particle var-
iation were ignored. As shown, the error attains a constant
Fig. 13. Normalized spatially averaged cross-stream drag coupling term
vs. time calculated from the Monte-Carlo particle field (a) and localized
error in the averaged cross-stream drag coupling term vs. time calculated
from the particle and mean fields (b).
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value between 1 and 2% at t ¼ tmax for droplets of
St > 0:01. For the St ¼ 0:01 case, the error grows in time
with the maximum occurring at a time corresponding to
the eddy turn-over time.

Fig. 13a and b shows the time evolution of the normal-
ized cross-stream component of the momentum source
term, hF DviMC=hF Dvðt ¼ 0ÞiMC, and F Dv;SGS. The normal-
ized hF DviMC varies over a large range of values because
the initial value is small as defined by the initial perturba-
tion velocity in the cross-stream direction. Fig. 13b shows
that F Dv;SGS is much larger than F Du;SGS shown in
Fig. 11b with peak errors of � 300% for intermediate
Stokes number cases. Fig. 14a and b show hF Dvimean and
Fig. 14. Normalized spatially averaged cross-stream drag coupling term
vs. time calculated from the mean field (a) and compounded error in the
averaged cross-stream drag coupling term vs. time calculated from the
particle and mean fields (b).
P
F Dv;SGS where the mean-field information is used to

update the droplet equation source terms. BecauseP
F Dv;SGS shown in Fig. 13b is large, it is expected that dif-

ferences between hF DviMC and hF Dvimean will be large. The
is evident by comparing Figs. 13a and 14a as summarized
in Fig. 14b.

Fig. 15a and b shows the time evolution of the normal-
ized droplet phase mass loss rate source term, h _MiMC=
h _Mðt ¼ 0ÞiMC, and local error _MSGS. Fig. 15a shows that
h _Mi increases with increasing Stokes number because of
the larger relative slip velocity associated with the larger
droplets. The St ¼ 0:01 droplets heat up much faster than
the larger droplets and quickly attain a temperature close
to boiling. At this temperature the mass fraction of water
vapor at the droplet surface approaches unity, resulting
Fig. 15. Normalized spatially averaged mass loss rate coupling term vs.
time calculated from the Monte-Carlo particle field (a) and localized error
in the averaged mass loss rate term vs. time calculated from the particle
and mean fields (b).
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in very large values for the mass transfer number, BM, con-
sequently resulting in the non-linear behavior of the mass
loss rate source term observed in Fig. 15a. Fig. 15b shows
that _MSGS has a similar trend as that observed for the drag
source terms with largest fluctuations corresponding to the
eddy turn-over time. Fig. 16a and b shows the same infor-
mation as above; that is, h _Mimean and

P
_MSGS, except cal-

culated from the mean field. Fig. 16b shows that the
compounded error is relatively small but larger than the
local error at later time. For all cases the compounded
error increases overall during the course of the simulation.

Fig. 17a and b shows the time evolution of the normal-
ized droplet phase convection source term, hQciMC, and
local error, QcSGS. Fig. 17a shows that the value of the con-
vection source is dominated by the local slip velocity and
Fig. 16. Normalized spatially averaged mass loss rate coupling term vs.
time calculated from the mean field (a) and compounded error in the
averaged mass loss rate coupling term vs. time calculated from the particle
and mean fields (b).

Fig. 17. Normalized spatially averaged convection coupling term vs. time
calculated from the Monte-Carlo particle field (a) and localized error in
the averaged convection coupling term vs. time calculated from the
particle and mean fields (b).
this value increases as the Stokes number increases for
the cases St ¼ 1; 5 and 50. For the St ¼ 0:01 droplets, the
convective source quickly decreases as the droplets reach
a dynamic equilibrium with the gas and the relative slip
goes to zero; i.e. see Fig. 11. For these droplets, the convec-
tive source term only increases after the droplets have been
swept into the hotter gas region and the overall average
droplet temperature starts to increase. Consistent with
the drag and mass loss rate source terms, the convection
source is fairly sensitive to the local turbulent mixing envi-
ronment as evidenced by the increase in fluctuations in the
source terms coinciding with the eddy turn-over time.
Fig. 17b shows that the transiently localized error increases
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substantially, to as much as 200–300% as the simulation
progresses. Again, the sensitivity to SGS turbulence fluctu-
ations is evident by the magnitude of the fluctuations in the
error.

Fig. 18a and b shows the same source term time evolu-
tion information except the droplet phase equations are
updated with the mean-field droplet values and mean-field
source terms. Fig. 18b shows that the compounded error
increases with increasing Stokes number as time progresses.

Fig. 19a and b shows the time evolution of the ratio of
the spatially averaged convection source to evaporation
source. Fig. 19a is calculated from the Monte-Carlo parti-
cle field whereas Fig. 19b is calculated from the mean field.
Fig. 18. Normalized spatially averaged convection coupling term vs. time
calculated from the mean field (a) and compounded error in the
convection coupling term vs. time calculated from the particle and mean
fields (b).

ig. 19. Normalized spatially averaged convection to evaporation source
rm vs. time calculated from (a) the Monte-Carlo particle field and (b) the
ean field from the computational grid for St ¼ 0:01; 1; 5 and 50.
F
te
m

Fig. 19a and b are similar for both cases where the ratio of
convection to evaporation source terms are between 6 and
9 for St P 1. For St ¼ 0:01 the relative ratio of convection
to evaporation heat transfer is close to unity through out
the simulation.

10. Conclusions

In this work, the full velocity-scalar filtered mass
density function formulation for large eddy simulation of
a separated two-phase flow has been applied to a two-
phase flow of dilutely dispersed water droplets seeded in
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a two-dimensional temporally developing counter-current
turbulent mixing layer, for the first time. Closure models
for within-phase and phase interface terms for both the dis-
persed and carrier phases of the flow have been developed
and implemented. It has been found that droplets with
Stokes number of order unity disperse at a greater rate
than gas-phase fluid elements, consistent with other DNS
studies and experiments of particulate seeded turbulent free
shear flows. It has been found that accounting for the SGS
variations in two-way coupled dispersed particle–gas flows
is important for accurately calculating phase-coupling
source terms. The results in this study confirm the feasibil-
ity of a full velocity-scalar FMDF approach for particu-
late–gas turbulent two-phase flow applications.
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